MAY 11 2025

AVEVA Days Perth Pacific User Group — Oil/Gas/Energy

Lead: Cindy Crow, Industry Principal

12-13 MAY 2025

PERTH

The Industrial Intelligence Event 2025

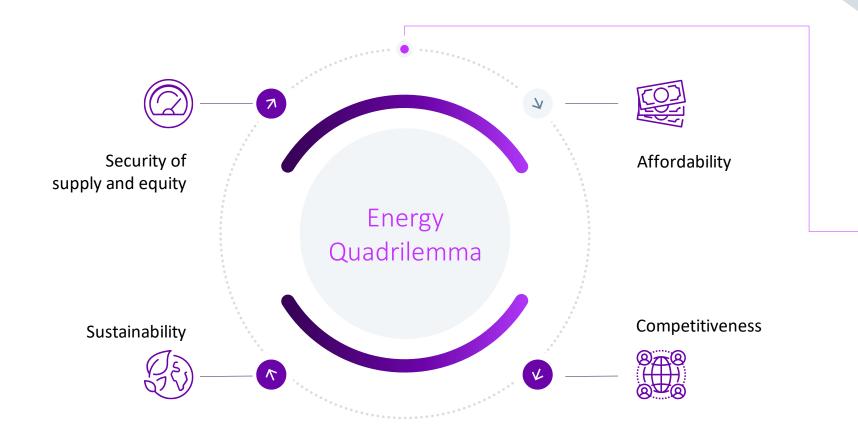
12-13 MAY 2025

AVEVADAY

PERTH

The Industrial Intelligence Event 2025

9am-9.10am	Introduction to the Energy User Group	Cindy
9:10–9:30am	PI Road Map, Engineering, Presales	PI – Albis
9.30-10am	Topic #1: Emissions < Total Energy Topic #2: Data Quality, Data Mgt < Petronas	Cindy presenter
10-10.30am	Morning tea break (in room)	
10.30-11am	Topic #3: Analytics and AI: Panel	Cindy facilitator
11:00 – 11:20am	CONNECT your Industrial Lifecycle Vision	Cindy presenter
11.20-11.30am	Q&A – feedback	Cindy



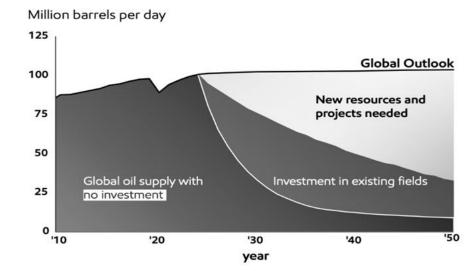
Global and Australian Energy Industry Market

Cindy Crow Industry Principal Oil & Gas

The Energy Industry is still facing a very complex market and geopolitical situation with the need to balance all the dimensions of the energy quadrilemma...

All the dimensions of the quadrilemma have one thing in common:

Process and Energy
Efficiency leading to
Operational
Excellence


...in a business environment where the need for oil & gas demand will be driven by an estimated 18% increase by 2050 while the world will still be focused on achieving net zero...

GLOBAL OIL DEMAND TILL 2050 Global oil demand (including biofuels and synfuel), MMb/d **Continued Momentum** CAGR, 2023-50, % Other² Plateau period1 (2025-30) Buildings 100 Maritime Industry Aviation 60 Chemicals 40 ■ Road transport -3 20 2030 2010 2020 2040 Plateau defined as ~1 MMb/d range around peak. Includes power, rail, oil and gas own use, etc. Ref. McKinsey – Global Energy Perspective 2024 Oil & Gas demand is expected to plateau between 2025 and 2035 at around 102 MMb/d and then start declining but will still contribute between 40-60% of the

With no intervention, oil supply will fall down to 30 MMb/d by 2030 hence investment in new fields and assets is needed to meet the demand

REQUIRED INVESTMENT TO SUSTAIN DEMAND

Ref. ExxonMobil Global Outlook 2024

overall energy demand in 2050.

...driving the Energy Industry to focus on five main priorities for the next short/mid term future...

Reshaping the

downstream sector

Investment growth and increase in consolidation and M&A (especially in the Permian Basin). Increase focus on scaling up and opening new plays like deepwater. No OECD countries heavily

investing in new assets.

Upstream growth

and consolidation

Investors in downstream sector are rationalizing their refining portfolios with many companies increasingly integrating further into chemicals (oil to chemicals).

Investment growth and increase in consolidation and M&A (especially in the Permian Basin). Increase focus on scaling up and opening new plays like deepwater. No OECD countries are heavily investing in new assets.

Diverging new

energy bets

Focus on driving performance and focusing on improved capital expenditures and cost efficiency leveraging AI for predictive maintenance and embracing learner capital project delivery.

From decarbonization perspective the main area of focus is reducing Scope 1 and 2 emissions (including methane) by electrifying oil field, improving energy efficiency and enhancing methane monitoring(1).

(1) 50+ Oil and Companies signed during COP28 the O&G Decarbonization charter committing on net zero by 2050 and reduce methane emissions by 2030.

Australian Market

Continued Investment and Diversification

Australia will continue to be global leader in LNG exports

Reserves in Northwest Shelf, Browse Basin (both Woodside) and Queensland (Origin/APLNG)CSG will provide sustained LNG production

Growing demand from Asia-Pacific markets such as China, Japan and Korea are an advantage to Australia as well as physical proximity

Decarbonization will put pressure on LNG possibly leading to investments in CCS (Carbon Capture and Storage) to offset emissions.

Digitalization and technology investments will enhance operational efficiency and reduce production costs, helping maintain a competitive advantage

LNG

Renewables

Diversification into Renewables

Only AUS projects sited

Offshore Wind

Solar

Hydrogen

Hybrid Energy projects that combine Oil and Gas and offset with renewables are expected in 2025

Wind: INPEX Flat Rocks Wind Farm

Solar: INPEX Bungola 1&2 Farm, Cohuna, Girgarre, Quorn Park Hybrid(with battery)

Hydrogen: Woodside H2 Projects; H2Perth, H2TAS in Australia and H2OK in North America invested \$5 Billion

Batteries: Origin \$1.07B into batteries

Sustainability and Decarbonization

Commitment to Net-Zero Targets

Australia Committed to Net Zero by 2050

In 2025 a stronger emphasis on Sustainability and decarbonization across O&G is expected, driven by society, regulatory pressures and investors.

- Reducing GHG (Green House Gases)
 Improving Energy Efficiency
 Carbon Capture and Storage
 Methane Emissions Reduction
- Shift towards a more Circular Economy
 Increasing focus on recycling and repurposing materials reducing waste and minimizing the environmental impact of operations

Technological Innovation and

Digital Transformation

Adoption of Advanced Technologies

- Technological innovation will continue to be a driving force thru 2025
- Digital transformation, including adoption of advanced technologies:
 - Artificial Intelligence Al
 - Machine Learning
 - Big data Analytics
 - IOT Internet of Things

Enhancing Operational Efficiency, Reducing Costs and Improving Decision-Making.

- We expect increased investment in digital twins(DT)- virtual replicas of physical assets that allow for real-time monitoring and simulation
- DT will enable predictive maintenance, optimize production processes and reduce downtime leading to significant cost savings and improved performance.
- Robotics and Automation; Enhancing safety by reducing human intervention and improved efficiency by automating repetitive tasks

Summary

Summary

Australia is poised for significant transformation in 2025, driven by technological advances, the global energy transition, regulatory changes, and evolving market dynamics. Companies that adapt to these new trends, invest in new technologies and prioritize sustainability will be well positioned to thrive.

The ability to navigate uncertainty, embrace change and innovate will be key to success in Australia's Oil and Gas Industry.

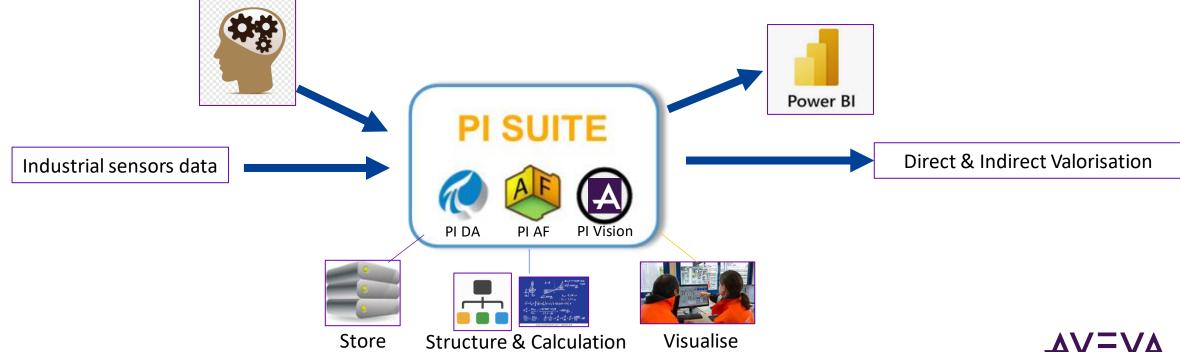
PI Roadmap, Engineering and Presales

Albis Durant

24/10/2023

Leveraging Real Time Operational Data to Reduce Greenhouse Gas Emissions

TotalEnergies: Leveraging real time operational data to reduce greenhouse gas emission


About Monitoring Center and Pl

Our Objectives:

- Data provider: Recover and archive site instruments times series data.
- Digital Solution maker: Build, deploy and run monitoring applications
- Digital Enabler: Stream PI data to other digital solution

Some PI Facts

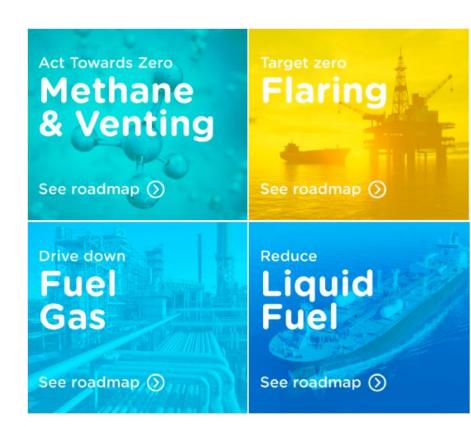
- 16 Affiliates
- 18 Years of Historical Data

Oil & Gas - Worldwide Solution

Realtime monitoring of 85% Scope1 GHG emissions within the Company's E&P Operated asset

CFR Carter Transfer Radiation

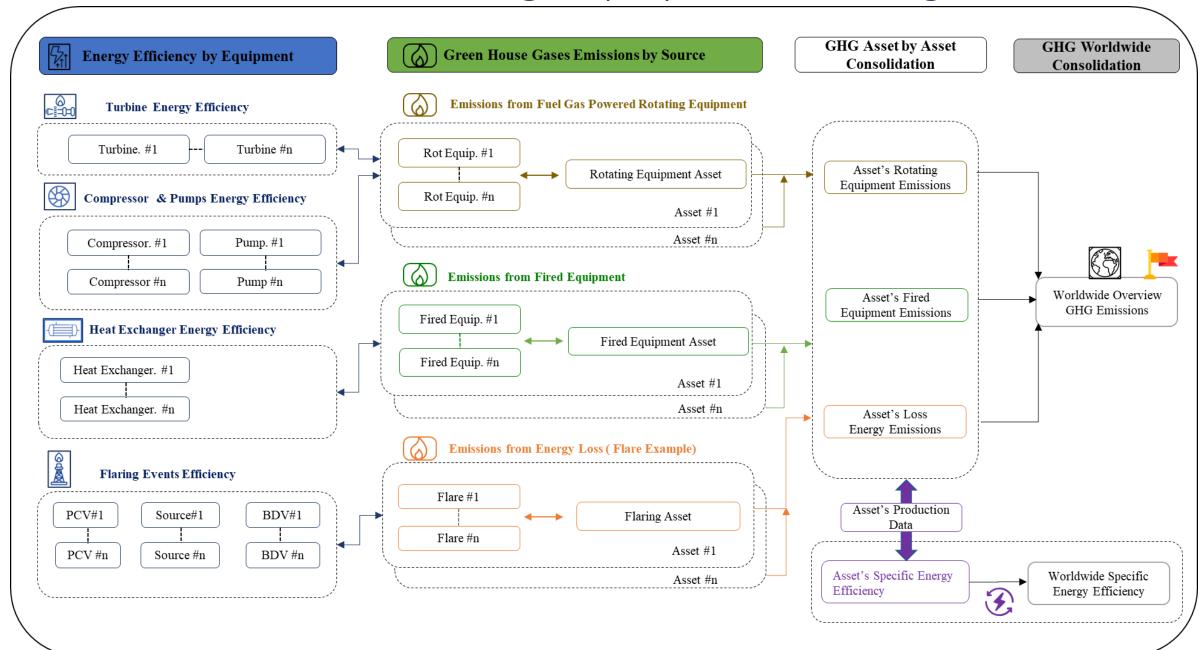
Challenge

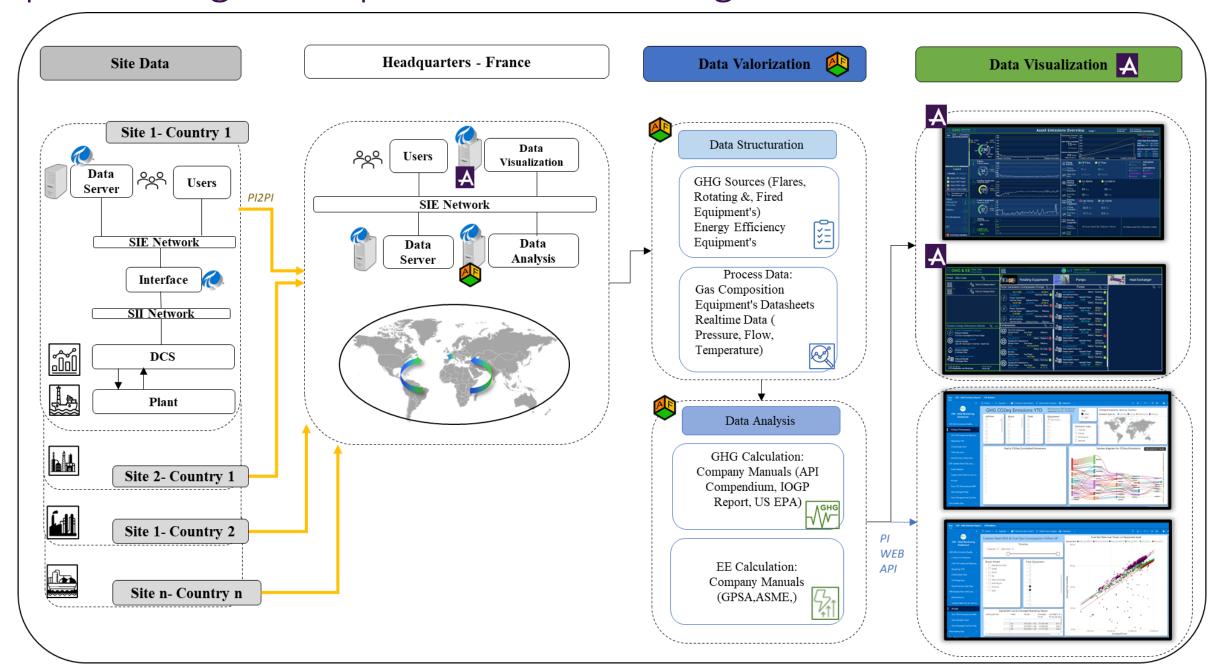

- Transform our operational practices toward greenhouse gases focus and environmentally friendly perspective by maximizing the utilization of existing field data and software resources
- Deploy an efficient, cost-effective digital solution that can be rapidly scaled up to broaden the range of monitored asset emissions,

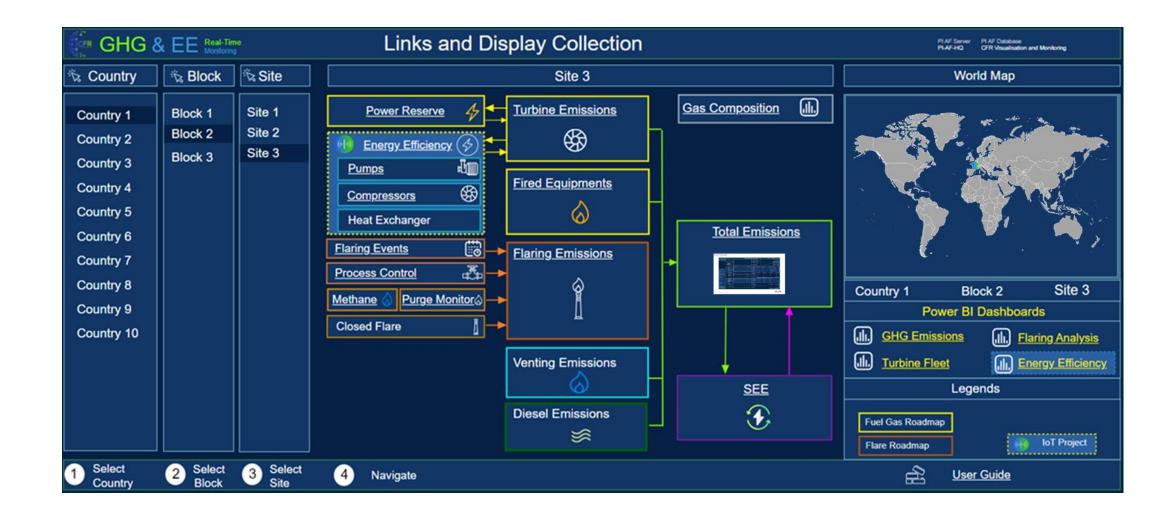
Solution

 Centralized and standardized approach, with a PI-AF model built once and then applied to hundreds of equipment and assets, supplying real-time data calculations, analysis and KPIs

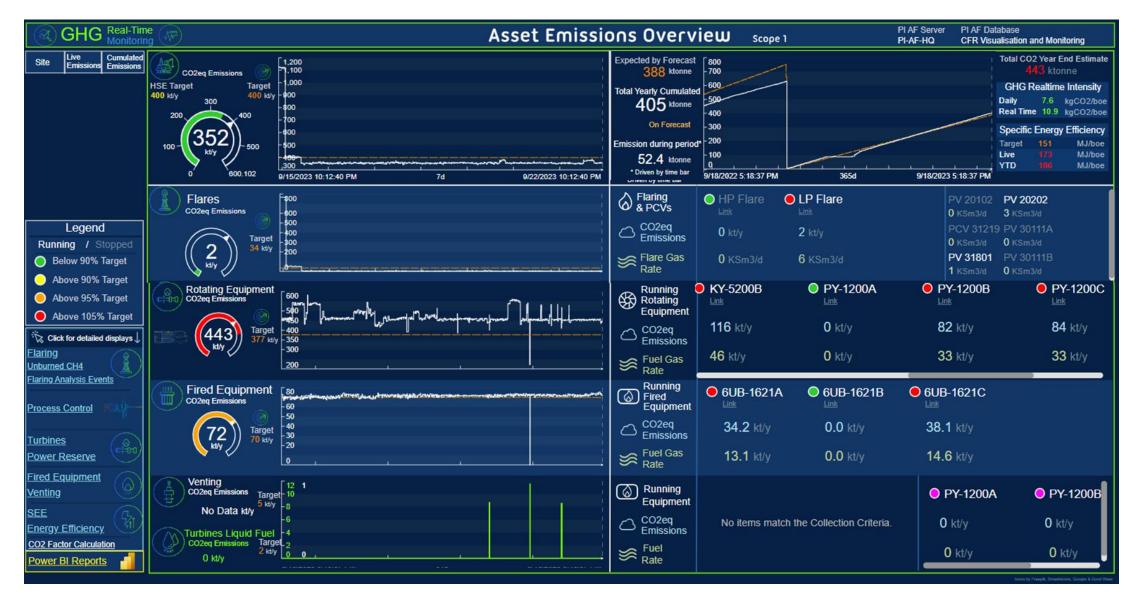
Results


- Successful development of industrialized monitoring tool within a three-year timeframe
- Headquarters and operating centers relying on the solution's displays consistently for daily discussions and operational decision-making.
- Efficiently identification of poorly performing equipment and undesired process deviations that contribute to GHG emissions.

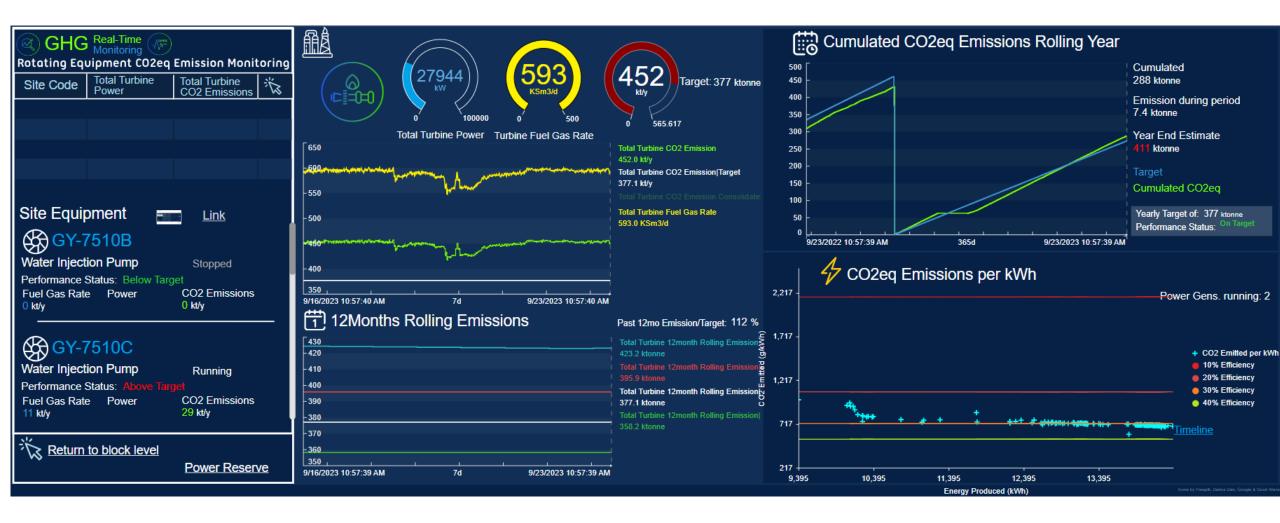

"To effectively reduce emissions and enhance energy efficiency, it is first needed to calculate and display this data through relevant indicators in suitable time for operational follow up."

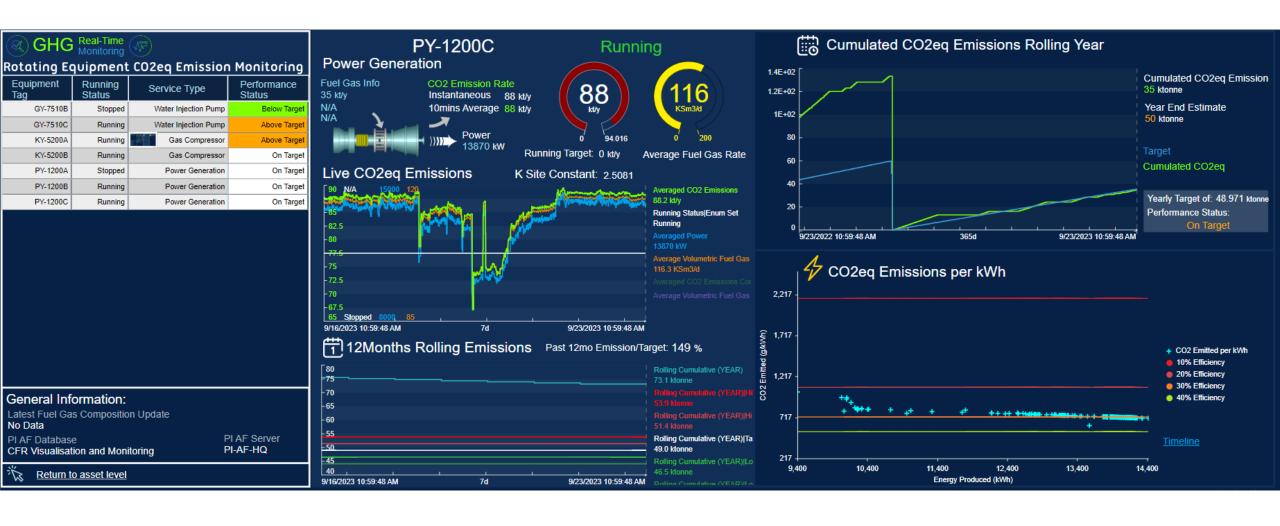


GHG & EE Real-time Monitoring Deployment Challenge



Implementing Aveva portfolio for creating a centralized solution





"Now that we've established all the monitoring tools, let's proactively identify opportunities to reduce greenhouse gas emissions"

Use Cases

- Purge Gas Optimization
- Categorizing flaring sources to decrease flared gas
- Detecting Passing Valves
- Detection of Process Control Anomalies to reduce flared gas
- Optimize the power delivery configuration to reduce emissions
- Reducing emissions by recycling less gas on compression system
- Reducing emissions by adjusting Water Injection pump pressure
- Detection of anomalies in pumps performance
- Reducing power consumption through gas compressors
- Closed Flare performance analysis

Study Case: Optimize the power delivery configuration to reduce emissions

Site Power Generation Overview

Introduction

Focus: Power Reserve Module

Significance: GHG Emissions Implications

Key Metric: Power Reserve (Required vs. Delivered)

Efficiency and Load

Correlation: Turbine Efficiency & Load Maximizing Efficiency: Load Optimization

Inefficiencies

Scenario: Excess Power Reserve

Consequence: Lower Efficiency, Increased GHG Emissions

Site Power Generation CO2 Emissions

Reliability vs. Redundancy

Considerations: N+1 Configurations

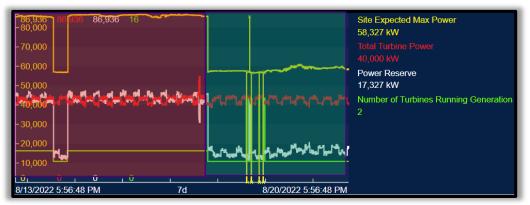
Context: Reliability vs. Efficiency Trade-off

Result: Equipment Deactivation

Impact: Reduced Power Demand, GHG Emissions

Enhanced Efficiency: Closer to Optimal Operating Point

Emission Reduction


Achievement: 15% CO2 Emission Reduction Annually

Study Case: Optimize the power delivery configuration to reduce emissions

Power Reserve at Site Level

Turbine CO2 Emissions

Introduction

Focus: Power Reserve Module

Significance: GHG Emissions Implications

Key Metric: Power Reserve (Required vs. Delivered)

Efficiency and Load

Correlation: Turbine Efficiency & Load Maximizing Efficiency: Load Optimization

Inefficiencies

Scenario: Excess Power Reserve

Consequence: Lower Efficiency, Increased GHG Emissions

Reliability vs. Redundancy

Considerations: N+1 Configurations

Context: Reliability vs. Efficiency Trade-off

Result: Equipment Deactivation

Impact: Reduced Power Demand, GHG Emissions

Enhanced Efficiency: Closer to Optimal Operating Point

Emission Reduction

Achievement: 15% CO2 Emission Reduction Annually

Conclusions and Take-aways

Achievements:

- Effective reduction in GHG emissions through practical & cost-effective solutions.
- Tangible benefits observed across the company.

Strategy & Approach:

- Standardized model: Built once, applied across multiple assets.
- Streamlined process for quick industrialization, allowing expanded monitoring and real-time data analysis.

Benefits of Real-Time Tool:

- Instant Insights: Real-time visibility on operational changes.
- Operational Excellence: Informed decision-making based on comprehensive data.
- Emission Reduction: Identification and benchmarking emissions from equipment.
- Financial & Environmental: Boost in revenues and a decrease in environmental impact.

Operational Improvements:

- Easy optimization of energy efficiency and emissions through minor adjustments.
- No capital expenditure needed—focus on studying existing configurations.
- Identify major contributors with just a few clicks, initiating impactful emission reduction projects.

Final Thoughts:

- Shift in operational practices towards a greenhouse gas focus.
- Demonstrated feasibility of reducing GHG emissions in pursuit of a net zero carbon energy transition.

OCTOBER 25, 2023

PETRONAS accelerates digital transformation with decision ready data

Presented By: Cindy Crow

The "WHY" For Digital Transformation... Moving Forward Together 50.30.0

Financial Resiliency

50% improvement in cash flow from Operations by 2025

Growth

30% revenue by 2030 from new non-traditional business to complement growth in existing core

Sustainability

Net zero carbon emissions by 2050 with positive social impact and adherence to business ethics corporate governance

The "How"...Enterprise Architecture (EA) Implementation to accelerate digital transformation

Objective

EA aims to drive PETRONAS towards a more structured and streamlined digital organisation while supporting strategic priorities

Strategic technology blueprint to deliver business capabilities for the next 3-5 years

Standardised capabilities, data model to reduce cost, complexity and drive efficiency

Potential savings from application rationalization and license optimization

Improve **business agility** for future growth

Single view of IT and Digital landscape

Improve process efficiency and operational excellence

Enterprise Architecture Implementation Approach

Addressing Data Challenge - PETRONAS Data Liberation

KEY ISSUES

Lacks reliable real-time data capability to operate and sustain the development and adoption of advanced analytics e.g. Al & ML.

Limited data accessibility to provide proactive Operations & Maintenance Solutions effectively across PETRONAS assets and plants.

DATA ADJACENCY PROGRAM

The Data Adjacency Program looks at liberating all the data across assets and plants and eventually ingesting them into PETRONAS Enterprise Data Hub (EDH) to ensure data integrity at source and consistent across organization, and to ensure availability and sustainability of data integrity (example PI Data, SAP data, etc.)

Approach PI Data: Data in local Data in Data Data in Pl Data in EDH Sensors/ Gauge Subsystem in DCS Historian PI AF TI(®)II Data Sources: Plant Information (PI) & SAP DATA Plant i.e. Plant Data Types Reliability Operations Maintenance Maintenance Data **ENRICHMENT Enterprise Data Hub Access Pattern Data Transformation Pipeline Data Serve Pattern**

RESULTS

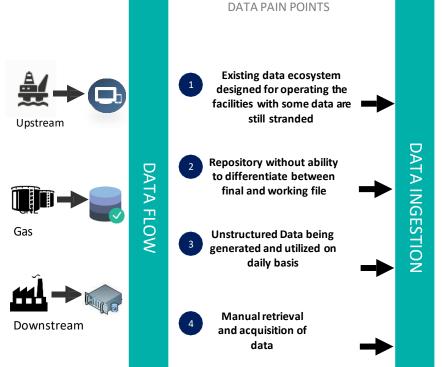
Asset and plant data in PETRONAS Enterprise Data Hub (EDH)

Data Integrity & standardization at source

 Data cleaned and goes thru data standardization process.

Data quality & full data visibility

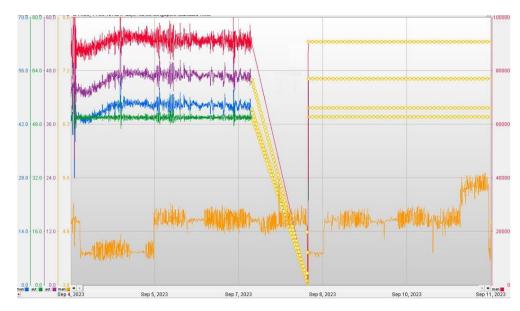
- Consistent quality data
- Improve data quality to ensure trusted data is being consumed from repository


Liberated data is ingested into Enterprise Data Hub (EDH)

-Single Source of Truth (Curate Once, Use Everywhere)

Integrated data ecosystem & stewardship

- Structured data being generated and utilized on daily basis



Problem Faced by Digital Product Owner

- Analytic result untrustworthy. Unable to make decision and action.
- Troubleshooting time-consuming because lack of visibility.
- Loss of trust and low user adoption.

Factors Contribute on Data Reliability Issue

Hard to Track with Thousands of Plant Data!!!

Decision Ready Data (DRD) Provides Data Reliability Visibility

 Pl Master Tag list PFD, P&ID

ASSESS As-is situation

Pl Data

Database

· PLAF

Areas of improvement and provide recommendation guided by

approved

standards

EXPLORE

PI Asset

Framework

construction

Verify and

result with

feedback

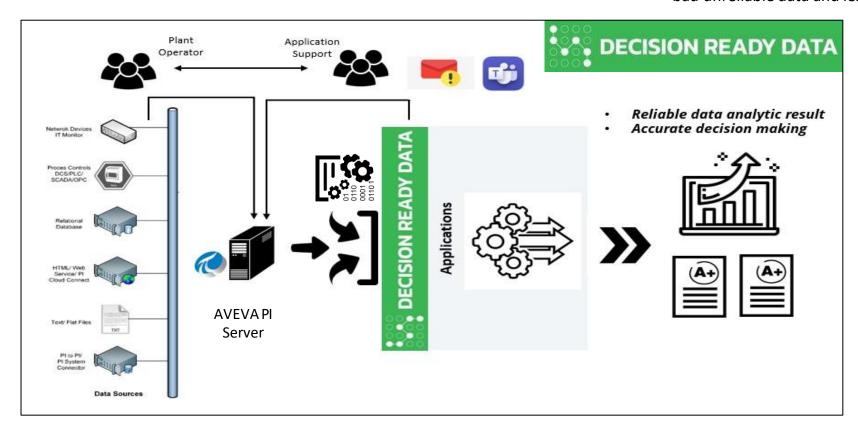
validate the

user iterative

PLAF

DART

Master



Unreliable data impacting analytics

If the data reliability from a specific asset is consistently poor over a prolonged period, it will jeopardize the investment and success of the analytic tools that uses the data.

Finding unreliable data takes time

More data means more time spent for you to find the bad unreliable data and less time to act.

Decision Ready Data (DRD) Provides Data Reliability Visibility

Analyze Plant
Data Healthiness
in Real-Time

Visibility on Data Reliability for Proactive Action

Use case specific monitoring

High level status and individual tag health status.

Decision Ready Data (DRD) Provides Infrastructure Health Visibility

System Uptime, Server Hardware Health & Network Status

Trigger Alert
Notification

PI Server, PI
Interfaces & Data
Source Systems
Monitoring

PI-BA Jobs Monitoring

Decision Ready Data (DRD) Provides API for 3rd Party Integration

3rd Party Application Integration

Data Status Based On Use Case

End User Have Better Visibility On Data Status

Increase Product
Adoption

Decision Ready Data (DRD) Outcome

- DRD has successfully safeguarded millions of value creation to Digital application by providing continuously reliable & good quality data.
- DRD provides data quality visibility, reduced data down-time and makes time-series analytics trustworthy
- DRD provides your organization the capability to act proactively on data quality issues.
- DRD provides more accurate analytic result for better decision making.

Testimony

"It's a challenge to ensure uptime in our Advance Analytics solution with a complex oil and gas digital architecture.

It's crucial to have a tool that can facilitate, providing us an overview of the solution, data, applications, and network insights. DRD eases our tasks in monitoring and tracking the overall health of application, enabling continuous value creation through high uptime."

Digital Product Owner

Decision Ready Data Within 1month, data reliability EOC NervCentre 25/50 improves from 40% to 70% with DRD Server & Network Health Summary ARIES Server & Network **Application**

PETRONAS implements enterprise data architecture to achieve transformation goals

Challenge

- Support the digital transformation required to improve company's cash flow, increase revenue and achieve net zero emissions.
- Improve business agility and support new ways of working.
- Ensure integrity of operations data for decision making.

Solution

 Implemented an enterprise-wide data architecture (NervCentre) based on AVEVA[™] PI System[™] and AVEVA[™] PI Vision[™]

Results

- Increased visibility to data quality and reduced data downtime.
- Able to proactively resolve data quality issues that arise.
- End-to-end visibility of the health of critical infrastructure.
- More accurate analytic results for better decision making.

